Swarm intelligence: when uncertainty meets conflict.

نویسندگان

  • Larissa Conradt
  • Christian List
  • Timothy J Roper
چکیده

Good decision making is important for the survival and fitness of stakeholders, but decisions usually involve uncertainty and conflict. We know surprisingly little about profitable decision-making strategies in conflict situations. On the one hand, sharing decisions with others can pool information and decrease uncertainty (swarm intelligence). On the other hand, sharing decisions can hand influence to individuals whose goals conflict. Thus, when should an animal share decisions with others? Using a theoretical model, we show that, contrary to intuition, decision sharing by animals with conflicting goals often increases individual gains as well as decision accuracy. Thus, conflict-far from hampering effective decision making-can improve decision outcomes for all stakeholders, as long as they share large-scale goals. In contrast, decisions shared by animals without conflict were often surprisingly poor. The underlying mechanism is that animals with conflicting goals are less correlated in individual choice errors. These results provide a strong argument in the interest of all stakeholders for not excluding other (e.g., minority) factions from collective decisions. The observed benefits of including diverse factions among the decision makers could also be relevant to human collective decision making.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand

Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...

متن کامل

Evolutionary and Swarm Computing for scaling up the Semantic Web

The success of the Semantic Web, with the ever increasing publication of machine readable semantically rich data on the Web, has started to create serious problems as the scale and complexity of information outgrows the current methods in use, which are mostly based on database technology, expressive knowledge representation formalism and high-performance computing. We argue that methods from c...

متن کامل

A RELIABILITY APPROACH TO COMPARE OPTIMAL SEISMIC DESIGNS OF MULTIPLE-TUNED-MASS-DAMPER

Passive systems are preferred tools for seismic control of buildings challenged by probabilistic nature of the input excitation. However, other types of uncertainty still exist in parameters of the control device even when optimally tuned. The present work concerns optimal design of multiple-tuned-mass-damper embedded on a shear building by a number of meta-heuristics. They include well-known g...

متن کامل

Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness

This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...

متن کامل

An Analysis of Particle Swarm Optimization with Data Clustering-Technique for Optimization in Data Mining

Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks require fast and accurate partitioning of huge datasets, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American naturalist

دوره 182 5  شماره 

صفحات  -

تاریخ انتشار 2013